分形多孔介质渗透率与孔隙度理论关系模型A new model for describing the relationship between the permeability and the porosity of fractal porous media
李留仁;袁士义;胡永乐;
摘要(Abstract):
基于多孔介质微观孔隙结构的分形特征、毛管模型和Poiseuille方程建立了计算分形多孔介质宏观物性参数渗透率与孔隙度的理论模型,给出了二者之间新的理论关系式.分形多孔介质宏观物性参数及其关系式是多孔介质微观孔隙结构分维数、分形系数和微观结构参数的函数,不包含任何经验或实验常数.定量分析了多孔介质微观孔隙结构分维数、分形系数和微观结构参数对分形多孔介质宏观物性参数及其关联式的影响.理论计算结果与实验结果存在较好的一致性,表明理论模型是有效的.
关键词(KeyWords): 多孔介质;分维数;分形系数;渗透率;孔隙度
基金项目(Foundation): 国家科技重大专项“大型油气田及煤层气开发”(编号:2008ZX05016)资助
作者(Authors): 李留仁;袁士义;胡永乐;
参考文献(References):
- [1]薛定谔A E.多孔介质中的渗流物理[M].王鸿勋,张朝琛,译.北京:石油工业出版社,1984:141-173.
- [2]韩大匡,万仁溥.多层砂岩油藏开发模式[M].北京:石油工业出版社,1999:58.(上接第51页)
- [3]Katz A J,Thomtson A H.Fractal sandstone pores:impli-cations for conductivity and pore formation[J].Phys Rev Lett,1985,54:1325-1328.
- [4]Sapoval B,Rosso M,Gouyet J F.The fractal nature of a diffusing front and the relation to percolation[J].J Phys Lett,1985,46:149-156.
- [5]Hewett TA.Fractal distribution of reservoir heterogeneity and their influence on fluid transport[C].SPE15386,1986.
- [6]Krohn C E,Thomtson A H.Fractal sandstone pores:auto-mated measurements using scanning-electron-microscope images[J].Phys Rev B,1986,33:6366-6374.
- [7]Young I M,Crawford J W.The fractal structure of soil ag-gregations:its measurement and interpretation[J].J Soil Sci,1991,42:187-192.
- [8]Perfect E,Kay B D.Fractal theory applied to soil aggrega-tion[J].Soil Sci Soc Am J,1991,55:1552-1558.
- [9]Smidt J M,Monro D M.Fractal modeling applied to reser-voir characterization and flow simulation[J].Fractals,1998,19:626-639.
- [10]Yu B M,Li J H.Some fractal characters of porous media[J].Fractals,2001(9):365-372.
- [11]李留仁,赵艳艳.多孔介质微观孔隙结构分形特征及分形系数的意义[J].中国石油大学学报:自然科学版,1995(2):16-21.
- [12]Yu B M,Cheng P.A fractal permeability model for bi-dis-persed porousmedia[J].Int J Heat Mass Transfer,2002,45:2983-2993.
- [13]Yu B M,Li J H,Li Z H.Permeabilities of unsaturated fractal porous media[J].Int J Multiphase Flow,2003,29:1625-1642.