一种用于石油化工厂环境下的仪表自动检测方法An Instrument Automatic Detection Method for Petrochemical Works
李伟;王飒;丁健刚;陈昊;肖力炀;
摘要(Abstract):
针对石油化工厂中人工抄表导致的低效、高误差和成本高等弊端,以及仪表图像拍摄条件场景复杂等问题,提出了一种基于改进Faster RCNN模型的工业数字表检测方法。首先,在特征提取网络阶段对卷积层低层和高层的网络特征进行融合,提高模型对细粒度细节和小目标的敏感度;其次,结合SENet网络结构,使模型关注不同通道的重要程度,通过分配不同的学习权重来强化对目标的关注度;最后,利用RPN网络进行最后处理,提取出数字表图像的边界框位置信息。结果表明,本文提出的模型检测精度为97.3%,相对于传统目标检测算法来说能更精准地识别出数字表。
关键词(KeyWords): Faster RCNN;特征融合;SENet;数字表检测
基金项目(Foundation): 国家自然科学基金资助项目(51978071);; 中央高校基本科研业务费专项资金资助项目(300102249301,300102249306)
作者(Authors): 李伟;王飒;丁健刚;陈昊;肖力炀;
参考文献(References):
- [1] 中国报告大厅.2021年1-2月全国电工仪器仪表产量统计分析[EB/OL].(2021-03-24)[2022-03-20].http://www.chinabgao.com/chanliang/60255.html
- [2] 刘雯雯.基于数字图像处理的家用电表识别系统研究[D].哈尔滨:东北林业大学,2009.
- [3] 陈广华,苗鹏,张宗健,等.字轮电能表读数系统的数字识别算法[J].北京交通大学学报,2012,36(3):87-91.CHEN Guanghua,MIAO Peng,ZHANG Zongjian,et al.Algorithm of digit recognition of wheel-power-meter reading system[J].Journal of Beijing Jiaotong University,2012,36(3):87-91.
- [4] 杨娟.基于数字图像处理的电能表图像识别技术研究与实现[D].南京:南京理工大学,2012.
- [5] ZHANG Yunzhou,YANG Shanbao,SU Xiaolin,et al.Automatic reading of domestic electric meter:an intelligent device based on image processing and ZigBee/Ethernet communication[J].Journal of Real Time Image Processing,2016,12(1):133-143
- [6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA,2016:779-778.
- [7] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision.Amsterdam,The Netherlands,2016:1-17.
- [8] GIRSHIC R.Faster R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Santiago Chile,2015:1440-1448.
- [9] REN Shaoqing,HE Kaiming,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
- [10]ZUO Lin,HE Peilin,ZHANG Changhua,et al.A robust approach to reading recognition of pointer meters based on improved mask-RCNN[J].Neurocomputing,2020,388:90-101.
- [11] ZUO Lin,HE Peilin,ZHANG Changhua,et al.A value recognition algorithm for pointer meter based on improved Mask-RCNN[C]//9th International Conference on Information Science and Technology(ICIST).IEEE,2019:108-113.
- [12] WANG Zheng,CHEN Kai,HE Peilin,et al.Multi-scale aggregation network for temporal action proposals[J].Pattern Recognition Letters,2019,122:60-65.
- [13]林刚,王波,彭辉,等.基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J].电力自动化设备,2019,39(5):213-218.LIN Gang,WANG Bo,PENG Hui,et al.Multiple-target detection and localization of transmission line inspection image based on improved Fast-RCNN[J].Electric Power Automation Equipment,2019,39(5):213-218.
- [14]刘召,张黎明,耿美晓,等.基于改进的Faster R-CNN高压线缆目标检测方法[J].智能系统学报,2019,14(4):627-634.LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transaction on Intelligent Systems,2019,14(4):627-634.
- [15]赵文清,程幸福,赵振兵,等.注意力机制和Faster RCNN相结合的绝缘子识别[J].智能系统学报,2020,15(1):92-98.ZHAO Wenqing,CHENG Xingfu,ZHAO Zhenbing,et al.Insulator recognition based on attention mechanism and Faster RCNN[J].CAAI Transactions on Intelligent Systems,2020,15(1):92-98.
- [16]陈英,蒋文峰,杨丰玉,等.智能电能表数字识别算法研究[J].信息通信,2020(1):17-21,26.CHEN Ying,JIANG Wenfeng,YANG Fengyu,et al.Research on digital recognition algorithm of intelligent electric meter[J].Information and Communication,2020(1):17-21,26.
- [17] 骆文莉,吴秦.多层次特征融合与注意力机制的文本检测[J/OL].小型微型计算机系统:1-9[2021-04-23].http://kns.cnki.net/kcms/detail/21.1106.TP.20210420.1106.017.html.
- [18] LUO Huiyuan,HAN Guangliang,WU Xiaotian,et al.LF3Net:leader-follower feature fusing network for fast saliency detection[J].Neurocomputing,2021,449:24-37.
- [19]彭昆福,王子磊,王磊,等.基于深度回归的指针仪表读数识别方法[J].信息技术与网络安全,2020,39(12):37-43.PENG Kunfu,WANG Zilei,WANG Lei,et al.Pointer meter reading recognition by deep regression[J].Information Technology and Net Security,2020,39(12):37-43.
- [20]MA He,HAN Guoqing,PENG Long,et al.Rock thin sections identification based on improved squeeze-and-Excitation Networks model[J].Computers and Geosciences,2021,152:104780.